

Reg.	No.	:	
141			
Name	:		

Fourth Semester B.Tech. Degree Examination, May 2013 (2008 Scheme)

Branch: Electrical and Electronics
08.404: ELECTRICAL MEASUREMENTS - I (E)

Time: 3 Hours

Max. Marks: 100

PART-A

Answer all questions from Part – A:

 $(10\times4=40 \text{ Marks})$

- Using dimension analysis show that absolute measurement of resistance is possible by measuring mutual inductance (M) and number of revolutions per sec (n) using the relation R = Mn.
- 2. What is meant by 'loading effect' while meters are connected for measurements?
- 3. What is the advantage of using heterostatic connection in quadrant electrometer?
- 4. Why electrodynamo meter type instruments are called as transfer instruments?
- 5. What is the purpose of TOD meters? On a rule in a long in a lon
- 6. What are the sources of error in AC potentiometer?
- 7. What is 'phantom loading'? Why it is used?
- 8. What are the problems encountered in high resistance measurements?
- 9. What are the limitations of Wheatstone bridge?
- 10. How dc potentiometer is made direct reading?

5

10

10

PART-B

Answer one fu	I question	in each	Module	
---------------	------------	---------	--------	--

Module - I

- 11. a) What are the different types of error in measurement? How the errors are
 - b) A moving coil instrument has a resistance of 5 Ω with a full scale deflection for 15 mA current. The range of the meter is to be extended to measure 100 A using a manganin shunt. Calculate the error caused by 10°C rise in temperature.
 - i) When copper moving coil is directly connected across the manganin shunt.
 - ii) When 4Ω manganin swamping resistance is used in series with the copper coil.

The resistance temperature coefficient of copper and manganin are 0.4%/°C and 0.015%/°C rises respectively.

- 12. a) Discuss how the scale of a moving iron instrument can be made linear.
 - b) What are the different errors in a moving iron instrument?
 - c) Design a multi range dc milli ammeter using a basic movement with a meter resistance $50\,\Omega$ having a full scale deflections current of 1 mA. Design the Ayrton shunt required for ranges 0-5 A, 0-10 A and 0-20 A.

Module - II one emelding ent era mill.

- 13. a) Explain how a dc potentiometer can be used for calibration of a watt meter.
 - b) Draw the phasor diagram for an energy meter. Show that the speed of rotations of disc of an inductions type energy meter is proportioned to power.

14.	a)	What are the special features of a low power factor electro dynamo meter watt meter? Why they are required?	10
	b)	Why lag adjustment is required in an induction type energy meter? What are the methods adopted for adjustment? Explain.	10
		Module – III	
15.	a)	Explain the construction and working of a moving coil type frequency meter.	10
	b)	Describe the working of a schering bridge. Draw the phasor diagram at balance conditions.	10
16.	a)	Explain the loss of charge method for insulation resistance measurement.	10
	b)	Derive the condition for balance in a Kelvin double bridge.	10